翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

string duality : ウィキペディア英語版
string duality

String duality is a class of symmetries in physics that link different string theories, theories which assume that the fundamental building blocks of the universe are strings instead of point particles.
Before the so-called "duality revolution" there were believed to be five distinct versions of string theory, plus the (unstable) bosonic and gluonic theories.
Note that in the type IIA and type IIB string theories closed strings are allowed to move everywhere throughout the ten-dimensional space-time (called the ''bulk''), while open strings have their ends attached to D-branes, which are membranes of lower dimensionality (their dimension is odd - 1,3,5,7 or 9 - in type IIA and even - 0,2,4,6 or 8 - in type IIB, including the time direction).
Before the 1990s, string theorists believed there were five distinct superstring theories: type I, types IIA and IIB, and the two heterotic string theories (SO(32) and ''E''8×''E''8). The thinking was that out of these five candidate theories, only one was the actual theory of everything, and that theory was the theory whose low energy limit, with ten dimensions spacetime compactified down to four, matched the physics observed in our world today. It is now known that the five superstring theories are not fundamental, but are instead different limits of a more fundamental theory, dubbed M-theory. These theories are related by transformations called dualities. If two theories are related by a duality transformation, each observable of the first theory can be mapped in some way to the second theory to yield equivalent predictions. The two theories are then said to be dual to one another under that transformation. Put differently, the two theories are two mathematically different descriptions of the same phenomena. A simple example of a duality is the equivalence of particle physics upon replacing matter with antimatter; describing our universe in terms of anti-particles would yield identical predictions for any possible experiment.
String dualities often link quantities that appear to be separate: Large and small distance scales, strong and weak coupling strengths. These quantities have always marked very distinct limits of behavior of a physical system, in both classical field theory and quantum particle physics. But strings can obscure the difference between large and small, strong and weak, and this is how these five very different theories end up being related.
==T-duality==
(詳細はmomentum around the circle, because its momentum is linked to its wavelength (see Wave-particle duality), and 2πR must be a multiple of that. In fact, the particle momentum around the circle - and the contribution to its energy - is of the form n/R (in standard units, for an integer n), so that at large R there will be many more states compared to small R (for a given maximum energy). A string, in addition to traveling around the circle, may also wrap around it. The number of times the string winds around the circle is called the winding number, and that is also quantized (as it must be an integer). Winding around the circle requires energy, because the string must be stretched against its tension, so it contributes an amount of energy of the form wR/L_^2, where L_ is a constant called the ''string length'' and w is the winding number (an integer). Now (for a given maximum energy) there will be many different states (with different momenta) at large R, but there will also be many different states (with different windings) at small R. In fact, a theory with large R and a theory with small R are equivalent, where the role of momentum in the first is played by the winding in the second, and vice versa. Mathematically, taking R to L_^2/R and switching n and w will yield the same equations. So exchanging momentum and winding modes of the string exchanges a large distance scale with a small distance scale.
This type of duality is called T-duality. T-duality relates type IIA superstring theory to type IIB superstring theory. That means if we take type IIA and Type IIB theory and compactify them both on a circle (one with a large radius and the other with a small radius) then switching the momentum and winding modes, and switching the distance scale, changes one theory into the other. The same is also true for the two heterotic theories. T-duality also relates type I superstring theory to both type IIA and type IIB superstring theories with certain boundary conditions (termed orientifold).
Formally, the location of the string on the circle is described by two fields living on it, one which is left-moving and another which is right-moving. The movement of the string center (and hence its momentum) is related to the sum of the fields, while the string stretch (and hence its winding number) is related to their difference. T-duality can be formally described by taking the left-moving field to minus itself, so that the sum and the difference are interchanged, leading to switching of momentum and winding.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「string duality」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.